Determine the area bounded by the curve $y = 3x^2 + 6x + 8$, the x-axis and the ordinates x = 1 and x = 3.

- a. 6 unit²
- b. 6 unit²
- c. 66 unit²
- d. 65 unit 2

Solution:

For the area under the curve we have formula:

$$A = \int_{a}^{b} y \, dx$$

In our case we have:

$$A = \int_{1}^{3} (3x^{2} + 6x + 8) dx = \left(3\frac{x^{3}}{3} + 6\frac{x^{2}}{2} + 8x\right)|_{1}^{3} = (x^{3} + 3x^{2} + 8x)|_{1}^{3}$$

= 3³ + 3 * 3² + 8 * 3 - 1³ - 3 * 1² - 8 * 1 = 27 + 27 + 24 - 1 - 3 - 8 = 66

Answer: c. $66 unit^2$