Determine the area bounded by the curve $y=3 x^{2}+6 x+8$, the x -axis and the ordinates $x=1$ and $x=3$.
a. 6 unit 2
b. 6 unit 2
c. 66 unit 2
d. 65 unit 2

Solution:

For the area under the curve we have formula:

$$
A=\int_{a}^{b} y d x
$$

In our case we have:

$$
\begin{aligned}
A=\int_{1}^{3}\left(3 x^{2}+\right. & 6 x+8) d x=\left.\left(3 \frac{x^{3}}{3}+6 \frac{x^{2}}{2}+8 x\right)\right|_{1} ^{3}=\left.\left(x^{3}+3 x^{2}+8 x\right)\right|_{1} ^{3} \\
& =3^{3}+3 * 3^{2}+8 * 3-1^{3}-3 * 1^{2}-8 * 1=27+27+24-1-3-8=66
\end{aligned}
$$

Answer: c. 66 unit 2

