Find the surface area of a right octagonal pyramid with height 2.5 yards, and its base has apothem length 1.5 yards

Solution:

We have

$$
A O=2.5(\text { yards }), O D=1.5(\text { yards }), O D \perp B C .
$$

Denote S as the surface area of the right octagonal pyramid. Then

$$
S=8 S_{A B C}
$$

where $S_{A B C}$ is the area of $\triangle A B C$ and

$$
S_{A B C}=\frac{1}{2} A D \cdot B C .
$$

We have

$$
\begin{gathered}
A D^{2}=A O^{2}+O D^{2} \\
A D=\sqrt{A O^{2}+O D^{2}}=\sqrt{(2.5)^{2}+(1.5)^{2}}=\sqrt{6.25+2.25}=\sqrt{8.5}(\text { yards })
\end{gathered}
$$

Because the pyramid is the right octagonal one then

$$
\angle B O D=\frac{1}{2} \cdot \frac{2 \pi}{8}=\frac{\pi}{8}(\mathrm{rad}) .
$$

Then

$$
B C=2 \cdot B D=2 \cdot O D \cdot \tan \angle B O D=2 \cdot 1.5 \cdot \tan \frac{\pi}{8}=3 \tan \frac{\pi}{8}(\text { yards })
$$

Thus we have

$$
S=8 S_{A B C}=8 \cdot \frac{1}{2} A D \cdot B C=4 \cdot \sqrt{8.5} \cdot 3 \tan \frac{\pi}{8}=12 \sqrt{8.5} \tan \frac{\pi}{8} \approx 14.4916\left(y a r d s^{2}\right)
$$

Answer:

$$
S=12 \sqrt{8.5} \tan \frac{\pi}{8} \approx 14.4916\left(\text { yards }^{2}\right)
$$

