first derivative and second derivative of $f(x)=e^{\wedge}(1 / x)$
The product rule:

$$
(f * g)^{\prime}=g * f^{\prime}+f * g^{\prime}
$$

The derivative of the function of a function $h(x)=f(g(x))$ with respect to x is:

$$
h(x)^{\prime}=f^{\prime}(g(x)) * g^{\prime}(x)
$$

derivative of exponent:

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

derivative of x^{n} :

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

So, the first derivative equals:

$$
f^{\prime}(x)=\frac{d}{d x}\left(e^{\frac{1}{x}}\right)=e^{\frac{1}{x}} \frac{d}{d x}\left(\frac{1}{x}\right)=e^{\frac{1}{x}}\left(-\frac{1}{x^{2}}\right)=-\frac{e^{\frac{1}{x}}}{x^{2}}
$$

and the second derivative:

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(-\frac{e^{\frac{1}{x}}}{x^{2}}\right)=-\left(\frac{1}{x^{2}} \frac{d}{d x}\left(e^{\frac{1}{x}}\right)+e^{\frac{1}{x}} \frac{d}{d x}\left(\frac{1}{x^{2}}\right)\right)=-\left(-\frac{e^{\frac{1}{x}}}{x^{4}}-\frac{2 e^{\frac{1}{x}}}{x^{3}}\right)=\frac{e^{\frac{1}{x}}}{x^{4}}(1+2 x)
$$

Answer: the first derivative $=-\frac{e^{\frac{1}{x}}}{x^{2}}$, the second derivative $=\frac{e^{\frac{1}{x}}}{x^{4}}(1+2 x)$

