Geometric sequence is defined as sequence $b_1, b_2, ..., b_n, ...$ where for some constant q: $\frac{b_n}{b_{n-1}} = q$ for every n>1. We know that $b_n = b_1 * q^{n-1}$ Then $b_2 = b_1 * q = 3, b_5 = b_1 * q^4 = 81$ Next step is to find ex

We know that $b_n = b_1 * q^{n-1}$ Then $b_2 = b_1 * q = 3, b_5 = b_1 * q^4 = 82$ Next step is to find q: $\frac{b_5}{b_2} = \frac{81}{3} = 27$ In other hand $\frac{b_5}{b_2} = q^3$ So $q^3 = 27, q = 3$. $b_2 = b_1 * q = 3$ $b_1 * 3 = 3$ $b_1 = 1$ Then $b_3 = b_1 * q^2 = 1 * 3^2 = 9$

1