Show that the length of the curve $y=\log (\sec x)$ between the points $x=0$ and $x=\frac{\pi}{3}$ is $\log (2+\sqrt{3})$

Explanation:

We have the given curve $y=\log (\sec x)$. Differentiating, we get:

$$
\frac{d y}{d x}=\frac{1}{\sec (x)}=\sec (x) \tan (x)=\tan (x)
$$

Then, $\left(\frac{d s}{d x}\right)^{2}=1+\left(\frac{d s}{d x}\right)^{2}=1+\tan ^{2}(x)=\sec ^{2}(x)$
If we consider that the arc length S of the given curve is measured from $x=0$ in the direction of x increasing, so we have:
$\frac{d s}{d x}=\sec (x)$ or we can write $d s=\sec (x) d x$
Accordingly if S_{1} denotes the arc length from $x=0$ to $\frac{1}{3} \pi$, then

$$
\int_{0}^{s_{1}} d s=\int_{0}^{\frac{1}{3} \pi} \sec (x) d x
$$

We have function $f(x)=\sec (x)$. We calculate the primitive (integral) for our function (constant arising in the integration, are not included here):

$$
F(x)=\int f(x) d x=\int \sec (x) d x=\log (\sec (x)+\tan (x))
$$

Finally we got:

$$
F(x)=\log (\sec (x)+\tan (x))
$$

By the theorem of Newton-Leibniz definite integral can be expressed as:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Substituting in the above formula our data, namely the primitive and the limits of integration:

$$
\begin{aligned}
& \begin{aligned}
\int_{0}^{S_{1}} d s=\int_{0}^{\frac{1}{3} \pi} & \sec (x) d x=[\log (\sec (x)+\tan (x))]_{0}^{\frac{\pi}{3}} \\
& =\left(\log \left(\sec \left(\frac{\pi}{3}\right)+\tan \left(\frac{\pi}{3}\right)\right)\right)-(\log (\sec (0)+\tan (0)))=(\log (2+\sqrt{3}))-(0) \\
& =\log (2+\sqrt{3})
\end{aligned} \\
& S_{1}=\log (2+\sqrt{3}) \approx 1.31696
\end{aligned}
$$

