Task. Determine the limit:

$$
\lim _{x \rightarrow 0} \frac{4 e^{x}-2 e^{-x}-2}{x}
$$

Solution. We can use L'Hôpital's rule claiming that if f and g are two differentiable functions at $x=0$ then $f(0)=g(0)=0$, then

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Let $f(x)=4 e^{x}-2 e^{-x}-2$, and $g(x)=x$. Then

$$
f(0)=4-2-2=0, \quad g(0)=0,
$$

whence

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{4 e^{x}-2 e^{-x}-2}{x} & =\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0} \frac{\left(4 e^{x}-2 e^{-x}-2\right)^{\prime}}{x^{\prime}} \\
& =\lim _{x \rightarrow 0} \frac{4 e^{x}+2 e^{-x}}{1}=\lim _{x \rightarrow 0}\left(4 e^{x}+2 e^{-x}\right)=4+2=6
\end{aligned}
$$

