On a coordinate graph, Andrew places a paperclip at the point $(2,4)$ and a thumb tack at the point $(3,2)$. If he draws a line that passes through both of these points, which set of coordinates represents the x - and y-intercepts of the line?

Solution:

In our task if we have two points on a straight line, we can always find the slope. This case involves the use of the point-slope formula.

The point-slope formula:

$$
\begin{gathered}
m=\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m=\frac{(2-4)}{(3-2)}=\frac{-2}{1}=-2
\end{gathered}
$$

Now we have the slope and two points. We can find the equation (by solving first for " b ") if we have a point and the slope. So we need to pick one of the points (it doesn't matter which one), and use it to solve for b. Using the point (2, 4), We get:

$$
\begin{gathered}
y=m x+b \\
4=(-2) \times(2)+b \\
4=-4+b \\
b=8
\end{gathered}
$$

So, we get equation $y=-2 x+8$

If $x=0$, then $y=-2 \times 0+8=>y=8$, so y-intercept is $(0,8)$
If $y=0$, then $-2 x+8=0,-2 x=-8=>4$, so x-intercept is $(4,0)$
Answer: y-intercept is $(0,8)$ and x-intercept is $(4,0)$.

