A line segment has one endpoint A on the x axis and the other endpoint B, on the y-axis. It passes through the point $(1,2)$. If O is the point $(0,0)$, for what values of angle $O A B$ is the area of triangle $A O B$ a minimum? What is the minimum area of triangle $A O B$?

Equation of the line: $y=a x+b$. If line passes through the point $(1,2)$:
$2=1 * a+b \quad \Rightarrow \quad a=2-b$

Y-intercept equals (OB): $y(0)=a * 0+b=b$
X-intercept equals (AO): $y=0=a x+b \quad \Rightarrow \quad x=-b / a$
So, area of triangle $A O B$ equals:
$S=\frac{1}{2} b *\left(-\frac{b}{a}\right)$
If $a=2-b$:
$S=\frac{1}{2} \frac{b^{2}}{b-2}$
Minimum value if $\frac{d S}{d b}=0$
$\frac{d S}{d b}=\frac{1}{2} \frac{2 b(b-2)-b^{2}}{(b-2)^{2}}=\frac{1}{2} b \frac{b-4}{(b-2)^{2}}$
$b-4=0$
$b=4$
$\tan (O A B)=\frac{O B}{O A}=\frac{b}{-\frac{b}{a}}=-a$
$a=2-b=2-4=-2$
$O A B=\arctan (2)=63.4$
Area equals:
$S=\frac{1}{2} b *\left(-\frac{b}{a}\right)=\frac{1}{2} \frac{4^{2}}{2}=4$
Answer: $A B=63.4, S=4$

