In triangle RST $s=50$ and angle $T=45$ degrees using simplified radicals when appropriate, find the range of values of t for which there are
a. 2 possible measures for angle S;
b. exactly 1 measure for angle S.

Solution.

a. Let S_{1} and S_{2} are two possible measures for angle S :

$$
\angle S_{1}<\angle S<\angle S_{2}
$$

Let the range of values of t is $\left(t_{1}, t_{2}\right)$
S_{1} and S_{2} must be in the range $\left(0^{\circ}, 135^{\circ}\right)$.
Use law of sines to find the range of values of t.
First possible measure:

$$
\begin{gathered}
\frac{t_{1}}{\sin \angle T}=\frac{s}{\sin \angle S_{1}} \\
t_{1}=\frac{s \cdot \sin 45^{\circ}}{\sin \angle S_{1}}=\frac{25 \sqrt{2}}{\sin \angle S_{1}}
\end{gathered}
$$

Second possible measure:

$$
\begin{gathered}
\frac{t_{2}}{\sin \angle T}=\frac{s}{\sin \angle S_{2}} \\
t_{2}=\frac{25 \sqrt{2}}{\sin \angle S_{2}}
\end{gathered}
$$

Answer:

$$
\frac{25 \sqrt{2}}{\sin \angle S_{1}}<t<\frac{25 \sqrt{2}}{\sin \angle S_{2}}
$$

b.

Similarly use law of sines to find t :

$$
\begin{gathered}
\frac{t}{\sin \angle T}=\frac{s}{\sin \angle S} \\
t=\frac{s \cdot \sin \angle T}{\sin \angle S}=\frac{50 \cdot \sqrt{2}}{2 \cdot \sin \angle S}
\end{gathered}
$$

Answer: $t=\frac{50 \cdot \sqrt{2}}{2 \cdot \sin \angle S}$.

