Evaluate $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\cot \theta-\cos \theta}{\cos ^{3} \theta}$

Solution.

Take the limit:
$\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\frac{1}{\tan \theta}-\cos \theta}{\cos ^{3} \theta}$
Factor the numerator and denominator:
$=\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{1-\cos \theta \tan \theta}{\frac{\tan \theta\left(\cos ^{3} \theta \tan \theta\right)}{\tan \theta}}$
Cancel terms, assuming $\frac{1}{\tan \theta} \neq 0$:
$=\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{1-\cos \theta \tan \theta}{\cos ^{3} \theta \tan \theta}$
Indeterminate form of type 0/0. Applying L'Hospital's rule we have
$\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{1-\cos \theta \tan \theta}{\cos ^{3} \theta \tan \theta}=\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\frac{d(1-\cos \theta \tan \theta)}{d \theta}}{\frac{d\left(\cos ^{3} \theta \tan \theta\right)}{d \theta}}:$
$=\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{2}{1-3 \cos 2 \theta}$
Factor out constants:
$=2\left(\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{2}{1-3 \cos 2 \theta}\right)$
The limit of a quotient is the quotient of the limits, the limit of constant is the constant:
$=\frac{2}{\lim _{\theta \rightarrow \frac{\pi}{2}}(1-3 \cos 2 \theta)}$
The limit of sum is the sum of limits:
$=\frac{2}{1-3 \lim _{\theta \rightarrow \frac{\pi}{2}} \cos 2 \theta}$
Using the continuity of $\cos \theta$ at $\theta=\pi$ write $\lim _{\theta \rightarrow \frac{\pi}{2}} \cos 2 \theta$ as $\cos \left(\lim _{\theta \rightarrow \frac{\pi}{2}} 2 \theta\right)$ and factor out constant:
$=\frac{2}{1-3 \cos \left(2 \lim _{\theta \rightarrow \frac{\pi}{2}} \theta\right)}=\frac{2}{1-3 \cos \left(2 \cdot \frac{\pi}{2}\right)}=\frac{1}{2}$
Answer.

$$
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\cot \theta-\cos \theta}{\cos ^{3} \theta}=\frac{\mathbf{1}}{\mathbf{2}}
$$

