Why is $\tan \theta=$ slope of line?

Answer:

To explain why is $\tan \theta=$ slope of line we need to define the slope. The slope of a line is a number that measures its "steepness", usually denoted by the letter m. It is the change in y for a unit change in x along the line. The slope of a line (also called the gradient of a line) is a number that describes how "steep" it is. Also we know one of the most important properties of a straight line is in how it angles away from the horizontal. This concept is reflected in something called the "slope" of the line.

Consider a straight line that passes through the points $\mathbf{A}\left(\boldsymbol{x}_{1} \boldsymbol{y}_{1}\right)$ and $\mathbf{B}\left(\boldsymbol{x}_{2} \boldsymbol{y}_{2}\right)$. We know that the gradient, m, of the line is defined by:

$$
m=\frac{\text { change in } y}{\text { change in } x}=\frac{B C}{A C}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad x_{2} \neq x_{1}(\text { From the graph below })
$$

Where, $m=$ slope of the line.
Let θ be the angle (inclination angle). Then in the right angled triangle, Perpendicular = $y_{2}-y_{1}$ and base $=x_{2}-x_{1}$

$$
\begin{aligned}
& m=\frac{\text { change in } y}{\text { change in } x}=\frac{B C}{A C}\left(\frac{\text { Perpendicular }}{\text { Base }}\right) \\
& \text { Therefore, } \tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

From the definition of the line and $\tan \theta$ we get that slope of the line $=\tan \theta$

$$
m=\tan \theta \text { slope of the line }
$$

