Answer:

To explain why is $tan \theta$ = slope of line we need to define the slope. The slope of a line is a number that measures its "steepness", usually denoted by the letter m. It is the change in yfor a unit change in x along the line. The slope of a line (also called the gradient of a line) is a number that describes how "steep" it is. Also we know one of the most important properties of a straight line is in how it angles away from the horizontal. This concept is reflected in something called the "slope" of the line.

Consider a straight line that passes through the points $A(x_1y_1)$ and $B(x_2y_2)$. We know that the gradient, m, of the line is defined by:

$$m = \frac{change in y}{change in x} = \frac{BC}{AC} = \frac{y_2 - y_1}{x_2 - x_1} \qquad \qquad x_2 \neq x_1 (From the graph below)$$

Where, m = slope of the line.

Let θ be the angle (inclination angle). Then in the right angled triangle, Perpendicular = $y_2 - y_1$ and base = $x_2 - x_1$

$$m = \frac{change \text{ in } y}{change \text{ in } x} = \frac{BC}{AC} \left(\frac{Perpendicular}{Base}\right)$$

Therefore, $\tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$

From the definition of the line and $\tan \theta$ we get that *slope of the line* = $\tan \theta$

$\begin{array}{c|c} y \\ y_2 \\ y_1 \\ y_1 \\ x_2 - x_1 \\ x_1 \\ x_2 - x_1 \end{array} \xrightarrow{\mathbf{B}} y_2 - y_1 \\ \mathbf{C} \\ \mathbf{C}$

$m = tan \theta$ slope of the line