Given the trigonometric function
$y=120 \sin \left((\mathrm{Pi} / 6)^{*} x-\mathrm{Pi} / 3\right)$ where x is in radians representing seconds
$y=120 \sin \left[\frac{\pi}{6} x-\frac{\pi}{3}\right]$

The general form of the sine function is:
$y=A \sin (B x+C)+D$
where:
A is the amplitude of the function
The period of the function is: $T=\frac{2 \pi}{B}$
The phase shift of the function is: $\frac{C}{B}$
a.
$A=120$, therefore:
120 is the amplitude of the function.
b.
$B=\frac{\pi}{6}, \quad T=\frac{2 \pi}{B}=12-$ period
numbers cycles per second: $n=\frac{1}{T}=\frac{1}{12} \mathrm{~Hz}$
12 radians is the period of the function in seconds which is $\frac{1}{12}$ hertz.(cycles per second)
c.
$\frac{C}{B}=-\frac{1}{2}$
$1 / 2$ radians is the phase shift right, because phase shift with the sign "-".

