Show that there are at least three distinct points x1,x2, and x3 such that f(x1)=f(x2)=f(x3)=10, where $f(x)=x^3/(x^2-1)$

$\frac{x^3}{x^2-1}=1$	U
becaus formul	omial can be factored using the difference of squares formula, e both terms are perfect squares. The difference of squares a is a ² -b ² =(a-b)(a+b).
x ³ (x-1)(x+1) = 1·0
	he variable is in the denominator on the left-hand side of the
equatio	on, this can be solved as a ratio. For example, $\frac{A}{B}$ = C is equivalent to
$\frac{A}{C} = B$.	
_	1)(x+1)
10 = (x	1)(X+1)
on the	is on the right-hand side of the equation, switch the sides so it is left-hand side of the equation.
(x-1)($x+1)=\frac{x^3}{10}$
	that all solutions found are valid and are part of the domain by uting them into the original equation.
Multiply	each term in the equation by 10.
(x-1)($\times +1) \cdot 10 = \frac{\times^3}{10} \cdot 10$
Multiply	(x-1)(x+1) by 10 to get 10(x-1)(x+1).
	$(x+1) = \frac{x^3}{10} \cdot 10$
	the right-hand side of the equation by simplifying each term. $(x+1)=x^3$
using t method each bi	each term in the first group by each term in the second group he FOIL method. FOIL stands for First Outer Inner Last, and is a d of multiplying two binomials. First, multiply the first two terms in nomial group. Next, multiply the outer terms in each group, ed by the inner terms. Finally, multiply the last two terms in each
	+×·1-1·×-1·1)=x³

	iply 10 by each term inside the parentheses. 2-10=x3
Since	e \mathbf{x}^3 contains the variable to solve for, move it to the left-hand side
of t	he equation by subtracting x³ from both sides.
10 x²	² -10-x ³ =0
	e all terms not containing x to the right-hand side of the equation. $\cdot 10x^2 - 10 = 0$
^ -	
Divio	le each term in the equation by -1.
	$0x^2+10=0$
The	solutions of the polynomial equation were found with the
	and-Kerner Method. There are 0 imaginary solutions. 0575,-0.9554,9.8979