prove : $\tan (x)+\sec (x)=\cos (x) / 1-\sin (x)$

By definition, the tangent (\tan) of an angle is the ratio of the sine to the cosine:
$\tan (x)=\frac{\sin (x)}{\cos (x)}$
and the reciprocal function secant (sec) is the reciprocal of the cosine:
$\sec (x)=\frac{1}{\cos (x)}$
Therefore:
$\tan (x)+\sec (x)=\frac{\sin (x)}{\cos (x)}+\frac{1}{\cos (x)}=\frac{\sin (x)+1}{\cos (x)}$
multiply by $1=\frac{1-\sin (x)}{1-\sin (x)}$:
$\frac{(\sin (x)+1)(}{\cos (x)} \frac{1-\sin (x))}{(1-\sin (x))}=\frac{1-\sin ^{2}(x)}{\cos (x)(1-\sin (x))}$
The basic relationship between the sine and the cosine is the Pythagorean trigonometric identity:
$\cos ^{2}(x)+\sin ^{2}(x)=1 \quad \Rightarrow \quad 1-\sin ^{2}(x)=\cos ^{2}(x)$
Therefore:
$\tan (x)+\sec (x)=\frac{\cos ^{2}(x)}{\cos (x)(1-\sin (x))}=\frac{\cos (x)}{1-\sin (x)}$

