If the probability of hitting a target is $3 / 4$ and 9 shots are fired independently, what is the probability of hitting the target once or not at all?

Solution:

Let the random variable X corresponds to the number of hits of a target out of 9 shots.
Here $X \sim B(n, p)$, where
$\mathrm{n}=9$ - number of shots which are fired independently
$\mathrm{p}=\mathrm{P}($ hitting a target $)=3 / 4=0.75$
$P(X=r)=P(r)={ }^{n} C_{r} p^{r} q^{n-r}$
$\mathrm{q}=1-\mathrm{p}$
$\mathrm{r}=0,1,2,3, \ldots, 9$
$P(X=r)=P(r)={ }^{9} C_{r}(0.75)^{r}(1-0.75)^{9-r}={ }^{9} C_{r}(0.75)^{r}(0.25)^{9-r}$
Required probability:
$P(X \geq 1)=1-P(X=0)=1-{ }^{9} C_{0}(0.75)^{0}(0.25)^{9}=1-(0.25)^{9}=0.9999962$
$P(X=0)=0.0000038$

Answer:

The probability of hitting the target once is 0.9999962 . The probability of hitting the target not at all is 0.0000038 .

