1) Solve the equation:

$$
\sin ^{2} \frac{x}{2}-2=0
$$

Solution:

$$
\sin ^{2} \frac{x}{2}-2=0
$$

Add 2 to both sides

$$
\sin ^{2} \frac{x}{2}=2
$$

Take the square root of both sides

$$
\sin \frac{x}{2}=\sqrt{2} \text { or } \sin \frac{x}{2}=-\sqrt{2}
$$

Look at the first equation $\sin \frac{x}{2}=\sqrt{2}$.
Take the inverse sine of both sides:

$$
\frac{x}{2}=\pi-\arcsin \sqrt{2}+2 \pi n_{1} \quad n_{1} \in Z
$$

or

$$
\frac{x}{2}=\arcsin \sqrt{2}+2 \pi n_{2} \quad n_{2} \in Z
$$

Multiply both sides by 2 :

$$
\begin{gathered}
x=2 \pi-2 \arcsin \sqrt{2}+2 \pi n_{1} n_{1} \in Z \\
x=2 \arcsin \sqrt{2}+4 \pi n_{2} n_{2} \in Z
\end{gathered}
$$

Look at the second equation $\sin \frac{x}{2}=-\sqrt{2}$
Take the inverse sine of both sides:

$$
\begin{gathered}
\frac{x}{2}=\pi+\arcsin \sqrt{2}+2 \pi n_{3} n_{3} \in Z \\
\frac{x}{2}=2 \pi n_{4}-\arcsin \sqrt{2} n_{4} \in Z
\end{gathered}
$$

Multiply both sides by 2 :

$$
\begin{gathered}
x=2 \pi+2 \arcsin \sqrt{2}+4 \pi n_{3} n_{3} \in Z \\
x=4 \pi n_{4}-2 \arcsin \sqrt{2} n_{4} \in Z
\end{gathered}
$$

Answer:

$$
\begin{gathered}
x=2 \pi-2 \arcsin \sqrt{2}+2 \pi n_{1} n_{1} \in Z \\
x=2 \arcsin \sqrt{2}+4 \pi n_{2} n_{2} \in Z \\
x=2 \pi+2 \arcsin \sqrt{2}+4 \pi n_{3} n_{3} \in Z \\
x=4 \pi n_{4}-2 \arcsin \sqrt{2} n_{4} \in Z
\end{gathered}
$$

2) Solve for exact solutions over [0,2pie) interval:

$$
\sin ^{2}\left(\frac{x}{2}-2\right)=0
$$

Solution:

Take the square root of both sides:

$$
\sin \left(\frac{x}{2}-2\right)=0
$$

Take the inverse sine of both sides:

$$
\begin{gathered}
\frac{x}{2}-2=\pi n n \in Z \\
0 \leq x<2 \pi
\end{gathered}
$$

so

$$
\begin{aligned}
& \frac{x}{2}-2=0 \\
& \frac{x}{2}-2=\pi
\end{aligned}
$$

Add 2 to both sides:

$$
\begin{gathered}
\frac{x}{2}=2 \\
\frac{x}{2}=\pi+2
\end{gathered}
$$

Multiply both sides by 2 :

$$
\begin{gathered}
x=4 \\
x=2 \pi+4
\end{gathered}
$$

Answer:

$$
\begin{gathered}
x=4 \\
x=2 \pi+4
\end{gathered}
$$

