Solution:

We can see from the graph, that total area equals 0 . Let's prove it algebraic:
The purple line corresponds to $|\ln | x|\mid$. The first part of area is:

$$
S_{1}=\int_{-1}^{1}|\ln | x| | d x
$$

Use integration by parts:

$$
S_{1}=\int_{-1}^{1}|\ln | x| | d x=|\ln | x| |_{-1}^{1}-\int_{-1}^{1} x \frac{\operatorname{sgn} x}{|x|} d x=2
$$

The second part of area is:
Blue line on the graph corresponds to $\ln |x|$
So

$$
S_{2} \int_{-1}^{0} \ln |x|=-1
$$

The third part of the area is:
Red line in the graph corresponds to $\ln x$

So

$$
S_{3}=\int_{0}^{1} \ln x=-1
$$

The total area is:

$$
S_{t o t a l}=S_{1}+S_{2}+S_{3}=2-1-1=0
$$

Answer: $S_{\text {total }}=0$

