If $A=$ alpha and $B=$ beta are the zeroes of the polynomial $p(x)=a x^{\wedge} 2+b x+c$, then evaluate $A-B$.

Vieta's formula for the second degree polynomial $(x)=a x^{2}+b x+c$: roots α and β of the equation $p(x)=0$ satisfy
$\alpha+\beta=-b / a \quad \alpha \beta=c / a$
Therefore:
$(\alpha+\beta)^{2}-4 \alpha \beta=\alpha^{2}+2 \alpha \beta+\beta^{2}-4 \alpha \beta=\alpha^{2}-2 \alpha \beta+\beta^{2}=(\alpha-\beta)^{2}$
$(\alpha-\beta)^{2}=\left(-\frac{b}{a}\right)^{2}-\frac{4 c}{a}=\left(\frac{b}{a}\right)^{2}-\frac{4 c}{a}$
$\alpha-\beta= \pm \sqrt{\left(\frac{b}{a}\right)^{2}-\frac{4 c}{a}}= \pm \frac{1}{a} \sqrt{b^{2}-4 a c}= \pm \frac{\sqrt{D}}{a}$
D-discriminant
Answer: $\alpha-\beta= \pm \frac{1}{a} \sqrt{b^{2}-4 a c}$

