Question 1. Let D be a non-empty subset of the real numbers, and $E=$ $\{a x \mid x \in D\}$ where $a>0$. Prove that E is open if and only if D is open.

Solution. It is sufficient to prove the implication: if D is open, then E is open (the converse implication is proved by applying the result for $\frac{1}{a}>0$, because $D=\left\{\left.\frac{x}{a} \right\rvert\, x \in E\right\}$).

Let $x_{0} \in E$, i. e. $x_{0}=a y_{0}$ for some $y_{0} \in D$. Since D is open, there is $\varepsilon>0$ such that all y satisfying $y_{0}-\varepsilon<y<y_{0}+\varepsilon$ belong to D. Then $a y \in E$ for all such y. Note that $x_{0}-a \varepsilon<a y<x_{0}+a \varepsilon$ and, moreover, any z from the interval $\left(x_{0}-a \varepsilon, x_{0}+a \varepsilon\right)$ can be expressed as $z=a y$, where $y \in\left(y_{0}-\varepsilon, y_{0}+\varepsilon\right) \subseteq D$. Thus, $\left(x_{0}-a \varepsilon, x_{0}+a \varepsilon\right) \subseteq E$, which proves that E is open.

