Find equation of plane passing through points $(1,-1,2)$ and $(2,-2,2)$ and which is perpendicular to the plane $6 x-2 y+2 z=9$?

Solution.

Plane which is perpendicular to the given plane should be parallel to the normal vector of this plane.

Find coordinates of normal vector from the equation $6 x-2 y+2 z=9: \vec{n}=\{6,-2,2\}$
Let's find the equation of a plane passing through points $(1,-1,2)$ and $(2,-2,2)$ and parallel to \vec{n} :
$\left|\begin{array}{ccc}x-1 & y+1 & z-2 \\ 2-1 & -2+1 & 2-2 \\ 6 & -2 & 2\end{array}\right|=0$,
$-2(x-1)-2(z-2)+0 \cdot 6(y+1)+6(z-2)-0 \cdot(-2)(x-1)-2(y+1)=0$,
$-2 x+2-2 z+4+6 z-12-2 y-2=0$,
$-2 x-2 y+4 z-8=0$,
$x+y-2 z+4=0$.

Answer.

$x+y-2 z+4=0$.

