How to find the two tangent to the Hyperbola $y=1 / x$ passing through the point $P(2,-4)$,

Show that the straight line $y=m x+b$ is a tangent to
$y=-x^{2}-3 x+4$ if $(m+3)^{2}=4(b-4)$
Solution:

1. The equation of the line passing through the point $P(2,-4)$ is
$(y+4)=k(x-2)$
Let $\left(x_{0}, y_{0}\right)$ is the point on the Hyperbola.
The slope of the tangent line to the Hyperbola at $x=x_{0}$ is
$y_{0}^{\prime}=-\frac{1}{x_{0}{ }^{2}}$, so
$(y+4)=-\frac{1}{x_{0}{ }^{2}}(x-2)$
When $x=x_{0}$ then $y=\frac{1}{x_{0}}$
$\left(\frac{1}{x_{0}}+4\right)=-\frac{1}{x_{0}{ }^{2}}\left(x_{0}-2\right)$
$x_{0}+x_{0}^{2}=-x_{0}+2$
$x_{0}{ }^{2}+2 x_{0}-2=0$
$x_{0}=-1-\sqrt{3}, x_{0}=-1+\sqrt{3}$
Hence there are two tangents to the Hyperbola $y=1 / x$ passing through the point $P(2,-4)$:
$(y+4)=-\frac{1}{(-1-\sqrt{3})^{2}}(x-2)$
$(y+4)=-\frac{1}{4+2 \sqrt{3}}(x-2)$
And
$(y+4)=-\frac{1}{(-1+\sqrt{3})^{2}}(x-2)$
$(y+4)=-\frac{1}{4-2 \sqrt{3}}(x-2)$
2. If line $y=m x+b$ is a tangent to $y=-x^{2}-3 x+4$ at the point $\left(x_{0}, y_{0}\right)$, then $m=y_{0}^{\prime}=-2 x_{0}-3$ and $y_{0}=-x_{0}^{2}-3 x_{0}+4$, so
$-x_{0}{ }^{2}-3 x_{0}+4=\left(-2 x_{0}-3\right) x_{0}+b$
$-x_{0}^{2}-3 x_{0}+4=-2 x_{0}^{2}-3 x_{0}+b$
So
$b-4=x_{0}{ }^{2}$
$m+3=-2 x_{0}$
$(m+3)^{2}=\left(-2 x_{0}\right)^{2}=4 x_{0}^{2}$
Hence
$(m+3)^{2}=4(b-4)$
