If $\cos p=-4 / 5$ with $p$ in quadrant 3 , and $\cos q=5 / 13$ with $q$ in quadrant 4 , find $\tan (p-q)$
a. 1
b. $-63 / 16$
c. $63 / 16$
d. $-33 / 16$

## Solution.

$\tan (\mathrm{p}-\mathrm{q})=\frac{\tan p-\tan q}{1+\tan p \cdot \tan q}$
$\tan p=\frac{\sin p}{\cos p}, \tan q=\frac{\sin q}{\cos q}$
$\sin ^{2} p+\cos ^{2} p=1$,
because p is in quadrant $3 \sin p=-\sqrt{1-\cos ^{2} p}, \sin p=-\sqrt{1-\frac{16}{25}}=-\sqrt{\frac{9}{25}}=-\frac{3}{5}$.
$\sin ^{2} q+\cos ^{2} q=1$,
because q is in quadrant $4 \sin q=-\sqrt{1-\cos ^{2} q}, \sin p=-\sqrt{1-\frac{25}{169}}=-\sqrt{\frac{144}{169}}=-\frac{12}{13}$.
$\tan p=-\frac{3}{5} \div\left(-\frac{4}{5}\right)=\frac{3}{4}$.
$\tan q=-\frac{12}{13} \div \frac{5}{13}=-\frac{12}{5}$.
$\tan (\mathrm{p}-\mathrm{q})=\frac{\frac{3}{4}+\frac{12}{5}}{1-\frac{3}{4} \cdot \frac{12}{5}}=-\frac{63}{16}$.

## Answer.

b. $-63 / 16$

