If $\cos p = -4/5$ with p in quadrant 3, and $\cos q = 5/13$ with q in quadrant 4, find $\tan(p-q)$

a. 1 b. -63/16 c. 63/16 d. - 33/16

Solution.

 $\tan(p-q) = \frac{\tan p - \tan q}{1 + \tan p \cdot \tan q}$ $\tan p = \frac{\sin p}{\cos p}, \tan q = \frac{\sin q}{\cos q}$ $\sin^2 p + \cos^2 p = 1,$

because p is in quadrant 3 sin $p = -\sqrt{1 - \cos^2 p}$, sin $p = -\sqrt{1 - \frac{16}{25}} = -\sqrt{\frac{9}{25}} = -\frac{3}{5}$. sin² $q + \cos^2 q = 1$,

because q is in quadrant 4 sin $q = -\sqrt{1 - \cos^2 q}$, sin $p = -\sqrt{1 - \frac{25}{169}} = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$.

 $\tan p = -\frac{3}{5} \div \left(-\frac{4}{5}\right) = \frac{3}{4}.$ $\tan q = -\frac{12}{13} \div \frac{5}{13} = -\frac{12}{5}.$ $\tan(p-q) = \frac{\frac{3}{4} + \frac{12}{5}}{1 - \frac{3}{4} + \frac{12}{5}} = -\frac{63}{16}.$

Answer.

b. -63/16