A police man spots a mugger from a distance of 200 meters. As the police man starts chasing the mugger, the mugger also starts running. Given that the speed of the mugger is $10 \mathrm{~km} / \mathrm{h}$ and that of the police man is $12 \mathrm{~km} / \mathrm{h}$, how far would have the mugger run before he is caught?

Solution:

Express movement speed km / h in m / s. So, we get movement speed of the mugger $v_{m}=10 \mathrm{~km} / \mathrm{h}=2.78 \mathrm{~m} / \mathrm{s}$, movement speed of the police man $v_{p}=12 \mathrm{~km} / \mathrm{h}=3.33 \mathrm{~m} / \mathrm{s}$. Knowing the distance and speed we can determine the time to cover the distance for mugger and police:
$t_{1}=\frac{200}{2.78}=72 \mathrm{sec}$ - time to cover the distance for the mugger.
$t_{2}=\frac{200}{3.33}=60 \mathrm{sec}$ - time to cover the distance for the police man.
A police man will overtake the mugger for 12 seconds before, so we can determine the distance at which he overtakes him. We can find distance $S_{m}=t_{2} \cdot v_{m}=60 \cdot 2.78 \approx 167 \mathrm{~m}$.

Answer: The mugger runs 167 meters before he's caught.

