What happens to the circumference of a circle if you double the radius? What happens if you double the diameter? What happens if you triple the radius? I need to show a problem and how to solve it.

Circumference is the linear distance around the outside of a closed curve or circular object.
We can find the length of circumference as function of radius:
$C=2 \cdot \pi \cdot r$
C - circumference of a circle;
r - radius of the circle;
$\pi \approx 3.14$
Connection between radius and diameter:
$D=2 \cdot r$-diameter of the circle
What happens to the circumference of a circle if you double the radius?
$R=2 \cdot r$ - new radius;
$C^{\prime}=2 \cdot \pi \cdot R=2 \cdot \pi \cdot(2 \cdot r)=2 \cdot(2 \cdot \pi \cdot r)=2 \cdot C$
What happens if you double the diameter?
$D=2 \cdot r$
$\mathrm{D}^{\prime}=2 \cdot \mathrm{D}=2 \cdot(2 \cdot \mathrm{r})=4 \cdot \mathrm{r}$
$D^{\prime}=2 \cdot R^{\prime}$
$\Rightarrow R^{\prime}=2 \cdot r$
$\mathrm{C}^{\prime}=2 \cdot \pi \cdot R^{\prime}=2 \cdot \pi \cdot 2 \cdot r=2 \cdot C$
What happens if you triple the radius?
$R=3 \cdot r$ - new radius;
$C^{\prime}=2 \cdot \pi \cdot R=2 \cdot \pi \cdot(3 \cdot r)=3 \cdot(2 \cdot \pi \cdot r)=3 \cdot C$

