A hundred squash balls are tested by dropping from a height of 100 inches and measuring the height of the bounce. A ball is "fast" if it rises above 32 inches. The average height of bounce was 30 inches and the standard deviation was $3 / 4$ inches. What is the chance of getting a "fast" standard ball?

We have normal distribution with mean 30 inches and standard deviation $-\frac{3}{4}$:
$\mathrm{m}=30$
$\sigma=3 / 4$
And we need to know:
$P(x>32)$
$P(x>32)=\int_{32}^{\infty} f(x) d x$
$f(x)$ - probability density function
The normal distribution has probability density:
$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}$
Therefore:
$P(x>32)=\int_{32}^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} d x$
Calculating this integral:
$P(x>32)=0.00383=0.383 \%$
Answer: 0.383 \%

