How to find the equation of the tangent and the normal for these curves at the given point:

1) $f(x)=x+\frac{2}{x}-1$, point $A(2,4)$
2) $g(x)=x^{2}+\frac{3}{e^{x}}+2$, point $B(0,1)$

Solution

General formula for tangent line:

$$
y_{t}=y_{0}+y_{0}{ }^{\prime}\left(x-x_{0}\right)
$$

General formula for normal:

$$
y_{n}=y_{0}-\frac{1}{y_{0}^{\prime}}\left(x-x_{0}\right)
$$

1) $f^{\prime}(x)=1-\frac{2}{x^{2}}$
$f^{\prime}(2)=1-\frac{2}{4}=0.5$.
So $y_{t}{ }^{f(x)}=4+0.5(x-2)=0.5 x+3$ and $y_{n}{ }^{f(x)}=4-2(x-2)=8-2 x$.
2) $g^{\prime}(x)=2 x-\frac{3}{e^{x}}$
$g^{\prime}(0)=-3$.
So $y_{t}{ }^{g(x)}=1-3(x-0)=1-3 x$ and $y_{n}{ }^{g(x)}=1+\frac{1}{3}(x-0)=\frac{1}{3} x+1$.

Answer

$y_{t}{ }^{f(x)}=0.5 x+3$ and $y_{n}{ }^{f(x)}=8-2 x$.
So $y_{t}{ }^{g(x)}=1-3 x$ and $y_{n}{ }^{g(x)}=\frac{1}{3} x+1$.

