Question \#29040

$$
\lim _{x \rightarrow x_{0}} f(x)=A \Leftrightarrow \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x: 0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-A|<\varepsilon
$$

(for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that
$\left.0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-A|<\varepsilon\right)$

Prove: $\lim _{x \rightarrow-4} x^{2}=16$

$$
\begin{gathered}
|f(x)-A|<\varepsilon \Rightarrow\left|x^{2}-16\right|<\varepsilon \\
|(x-4)(x+4)|<\varepsilon \\
|x+4|<\frac{\varepsilon}{|x-4|}
\end{gathered}
$$

Now we can let δ equal $\frac{\varepsilon}{|x-4|}$. But what do we do about the $|x-4|$. In general δ must be in terms of ε only, without any extra variables. So how we can remove this $x-4$ term? First we need to simplify the problem a little bit. Since the concept of limit only applies when x is close to x_{0}, we will first restrict x so that it is at most 1 away from x_{0}, or, mathematically, in our case,
$|x+4|<1$. Then, this means, $-5<x<-3$, or, $-9<x-4<-7.7<|x-4|<9$
Now consider the original inequality $|x+4|<\frac{\varepsilon}{|x-4|}<\frac{\varepsilon}{7}$
Since we now have two restriction, $|x+4|<1$ and $|x+4|<\frac{\varepsilon}{7}$ we let $\delta=\min \left\{1, \frac{\varepsilon}{7}\right\}$, the smaller of these two values, which guarantees that it will satisfy both inequalities. Finally, after all this, we can write up the proof. Given ε, let $\delta=\min \left\{1, \frac{\varepsilon}{7}\right\}$.

Suppose $\delta=1$. Since $1<\frac{\varepsilon}{7}$, we know $\varepsilon>7$. Then:

$$
\begin{aligned}
\left|x-x_{0}\right|<\delta \Rightarrow|x+4|<1 & \Rightarrow|(x-4)(x+4)|<|x-4| \Rightarrow\left|x^{2}-16\right|<|x-4|<9<\varepsilon \\
& \Rightarrow\left|x^{2}-16\right|<\varepsilon \Rightarrow|f(x)-A|<\varepsilon
\end{aligned}
$$

This completes the case $\delta=1$.
Now suppose $\delta=\frac{\varepsilon}{7}$. Then $\left|x-x_{0}\right|<\delta \Rightarrow|x+4|<\frac{\varepsilon}{7} \Rightarrow|(x-4)(x+4)|<\frac{9 \varepsilon}{7}$

$$
\Rightarrow\left|x^{2}-16\right|<\frac{9 \varepsilon}{7}<\varepsilon \Rightarrow|f(x)-A|<\varepsilon
$$

Finally, this completes the proof.

