

A conical tank (with its tip down and the circular base parallel to and above the ground) is filling with water in such a way that the height of the water is increasing at a rate of 0.1cm/hr at the instant that the height of the water level is 10cm . If the tank has a radius of 12cm and a height of 30cm , find how fast the area corresponding to the top of the water level is increasing at this instant.

Solution.

1. It is given that the radius of the base of the tank $R = 12\text{cm}$, and the height of the tank $H = 30\text{cm}$. Denote as $h(t)$ the level of the water at the moment t and $r(t)$ -the radius of corresponding water surface. At the instant t_0 the values $h(t_0) = 10\text{cm}$ and $\dot{h}(t_0) = 0.1\text{cm/hr}$.

2. Considering the vertical cross section of the tank one may write

$$\frac{h(t)}{r(t)} = \frac{H}{R}.$$

Hence $r(t) = \frac{R}{H}h(t)$ and the area of the water surface

$$S(t) = \pi r^2(t) = \frac{\pi R^2}{H^2} h^2(t).$$

Differentiating this expression we have

$$\dot{S}(t) = \frac{2\pi R^2}{H^2} h(t) \dot{h}(t),$$

Or at the moment $t = t_0$

$$\dot{S}(t_0) = \frac{2\pi * 12^2}{30^2} * 10 * 0.1 \text{cm}^2/\text{hr} = \frac{72\pi}{225} \text{cm}^2/\text{hr}.$$

Answer: $\frac{72\pi}{225} \text{cm}^2/\text{hr}$