Task. If the value of a $3 * 3$ determinant is 3 , then the value of the determinant formed by its cofactors will be
a) 9
b) 3
c) 27
d) none of these

Solution. Let

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

Recall that (i, j)-minor $M_{i j}$ is the matrix obtained from A by removing i-th row and j-th column. Then the (i, j)-cofactor is defined as

$$
C_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right) .
$$

For example, if $i=1$ and $j=3$, then

$$
M_{13}=\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

and

$$
C_{13}=(-1)^{1+3} \operatorname{det}\left(M_{13}\right)=+\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|=a_{21} a_{32}-a_{31} a_{22} .
$$

Let

$$
C=\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)
$$

be the matrix consisting of cofactors and transposed.
Then it is known that

$$
A C=\left(\begin{array}{ccc}
\operatorname{det}(A) & 0 & 0 \\
0 & \operatorname{det}(A) & 0 \\
0 & 0 & \operatorname{det}(A)
\end{array}\right)
$$

Hence

$$
\operatorname{det}(A) \operatorname{det}(C)=\operatorname{det}(A C)=\operatorname{det}(A)^{3} .
$$

Therefore

$$
\operatorname{det}(C)=\operatorname{det}(A)^{3} / \operatorname{det}(A)=\operatorname{det}(A)^{2}=3^{2}=9 .
$$

Answer. a) $\operatorname{det}(C)=9$

