At noon, ship A is 100 km west of ship B. Ship A is sailing east at $30 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $40 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4 pm ?

Solution:

Let at noon ship A was at the point A and ship B was at the point B. After t hours Ship A is at the point A_{1} and ship B at the point B_{1}

So after t hours the distance between the ships will be:
$S=A_{1} B_{1}=\sqrt{B A_{1}{ }^{2}+B B_{1}{ }^{2}}$
$B A_{1}=A B-A A_{1}$
$A B=100 \mathrm{~km}$-given
$A A_{1}=v_{A} \cdot t$
$v_{A}=30 \mathrm{~km} / \mathrm{h}$ - given
So $B A_{1}=100-30 t$
$B B_{1}=v_{B} \cdot t$
$v_{B}=40 \mathrm{~km} / \mathrm{h}$ - given
$B B_{1}=40 \cdot t$
So $S=\sqrt{(100-30 t)^{2}+(40 t)^{2}}$
The rate of change the distance is:
$V=\frac{d S}{d t}=\frac{-60 t+80 t}{2 \sqrt{(100-30 t)^{2}+(40 t)^{2}}}=\frac{10 t}{\sqrt{(100-30 t)^{2}+(40 t)^{2}}}$
When $t=4$
$V=\frac{10 \cdot 4}{\sqrt{(100-30 \cdot 4)^{2}+(40 \cdot 4)^{2}}}=0.25 \mathrm{~km} / \mathrm{h}$

