Task. A and B are two students. Their chances of solving a problem correctly are $1 / 3$ and $1 / 4$. If the probability of their making a common error is $1 / 20$ and they obtain the same answer then the probability of their answer to be correct is?
A. $1 / 12$
B. $1 / 40$
C. $13 / 120$
D. $10 / 13$

Solution. Consider the following events:
$C_{A}=$ "A solved problem correctly"
$C_{B}=$ "B solved problem correctly"
$\mathrm{S}=$ "A and B obtain the same answer"
$\mathrm{C}=$ "Their answer is correct"
$\mathrm{E}=$ "A and B made common error".
We will assume that the events C_{A}, C_{B}, and E independent, that is

$$
P\left(C_{A} C_{B} E\right)=P\left(C_{A}\right) * P\left(C_{B}\right) * P(E),
$$

$P\left(C_{A} C_{B}\right)=P\left(C_{A}\right) * P\left(C_{B}\right), \quad P\left(C_{A} E\right)=P\left(C_{A}\right) * P(E), \quad P\left(C_{B} E\right)=P\left(C_{B}\right) * P(E)$.
We should find the conditional probability $P(C \mid S)$. By definition where SC is the intersection of events S and C :
$\mathrm{SC}=$ "A and B obtain correct answer"
By assumption we have that

$$
P\left(C_{A}\right)=\frac{1}{3}, \quad P\left(C_{B}\right)=\frac{1}{4}, \quad P(E)=\frac{1}{20} .
$$

We will express the probabilities $P(S C)$ and $P(S)$ via $P\left(C_{A}\right), P\left(C_{B}\right)$, and $P\left(\overline{C_{A}} \overline{C_{B}}\right)$.
Notice that events SC and $C_{A} C_{B}$ coincide:
$\mathrm{SC}=C_{A} C_{B}=$ "A and B obtain correct answer",
so

$$
P(S C)=P\left(C_{A} C_{B}\right)=P\left(C_{A}\right) * P\left(C_{B}\right)=\frac{1}{3} * \frac{1}{4}=\frac{1}{12} .
$$

Now compute $P(S)$. Notice that S happens if either of the following two events hold:
$C_{A} C_{B}=$ " A and B made no errors'
$\overline{C_{A} C_{B}} E=$ " A and B made error and this error is the same".
These events are mutually exclusive, that is

$$
P(S)=P\left(C_{A} C_{B}\right)+P(F)
$$

Moreover,

$$
P(F)=P\left(\overline{C_{A} C_{B}} E\right) .
$$

Since events C_{A}, C_{B} and E are independent, we obtain that

$$
\begin{array}{rlr}
P(F) & =P\left(\overline{C_{A} C_{B}} E\right)=P\left(\overline{C_{A}}\right) * P\left(\overline{C_{B}}\right) * P(E) & \\
& =\left(1-\frac{1}{3}\right) *\left(1-\frac{1}{4}\right) * \frac{1}{20} \quad=\frac{2}{3} * \frac{3}{4} * \frac{1}{20}=\frac{1}{40},
\end{array}
$$

so

$$
P(S)=P\left(C_{A} C_{B}\right)+P(F)=\frac{1}{3} * \frac{1}{4}+\frac{1}{40}=\frac{1}{12}+\frac{1}{40}=\frac{13}{120} .
$$

Therefore

$$
P(C \mid S)=\frac{P(S C)}{P(S)}=\frac{P\left(C_{A} C_{B}\right)}{P\left(C_{A} C_{B}\right)+P(F)}=\frac{\frac{1}{12}}{\frac{13}{120}}=\frac{10}{13} .
$$

Answer. D) $\frac{10}{13}$.

