The internal bisector of angle of a triangle divides the opposite side internally in the ratio of sides containing the angle .Prove it.
Proof.

To prove $\frac{B K}{K C}=\frac{A B}{A C}$.
For $\triangle A B K$: $\frac{B K}{\sin \angle B A K}=\frac{A K}{\sin \angle B^{\prime}}$, (law of sines)
$\frac{B K}{\sin \left(\frac{1}{2} \angle B A C\right)}=\frac{A K}{\sin \angle B}, \sin \left(\frac{1}{2} \angle B A C\right)=\frac{B K \sin \angle B}{A K}$.
For $\triangle A K C: \frac{K C}{\sin \angle K A C}=\frac{A K}{\sin \angle C}$, (law of sines)
$\frac{K C}{\sin \left(\frac{1}{2} \angle B A C\right)}=\frac{A K}{\sin \angle C}, \sin \left(\frac{1}{2} \angle B A C\right)=\frac{K C \sin \angle C}{A K}$.
So $\frac{B K \sin \angle B}{A K}=\frac{K C \sin \angle C}{A K}$ and $\frac{B K}{K C}=\frac{\sin \angle C}{\sin \angle B}$.
For $\triangle A B C: \frac{A B}{\sin \angle C}=\frac{A C}{\sin \angle B}$, (law of sines)
$\frac{A B}{A C}=\frac{\sin \angle C}{\sin \angle B}$.
Thus $\frac{B K}{K C}=\frac{\sin \angle C}{\sin \angle B}$ and $\frac{A B}{A C}=\frac{\sin \angle C}{\sin \angle B}$.
Therefore $\frac{B K}{K C}=\frac{A B}{A C}$

Answer.

Hypothesis is proved.

