Task. The events X and Y are independent. Calculate the $P(X \cap Y)$ if $P(X)=0.64$ and $P(Y)=0.23$. Hence find $P(X \cup Y)$.

Solution. We can regard events X and Y as subsets of some probability space Ω. Then the event " X and Y " corresponds to the intersection $X \cap Y$, while the event " X or Y " is the union $X \cup Y$ of these events.

Recall that events X and Y are called independent if

$$
P(X \cap Y)=P(X) \cdot P(Y)
$$

Thus in our case

$$
P(X \text { and } Y)=P(X \cap Y)=P(X) \cdot P(Y)=0.64 \cdot 0.23=0.1472
$$

We should compute $P(X \cup Y)$. We claim that

$$
P(X \cup Y)=P(X)+P(Y)-P(X \cap Y)
$$

Indeed, recall that is the intersection $A \cap B$ of events A and B is empty, then

$$
P(A \text { or } B)=P(A \cup B)=P(A)+P(B)
$$

Notice that $X \cup Y$ can be represented as a union of three disjoint subsets:

$$
X \cup Y=(X \backslash Y) \cup(X \cap Y) \cup(Y \backslash X)
$$

whence

$$
P(X \cup Y)=P(X \backslash Y)+P(X \cap Y)+P(Y \backslash X)
$$

Moreover,

$$
X=(X \backslash Y) \cup(X \cap Y), \quad Y=(Y \backslash X) \cup(X \cap Y)
$$

whence

$$
P(X)=P(X \backslash Y)+P(X \cap Y), \quad P(Y)=P(Y \backslash X)+P(X \cap Y)
$$

Therefore

$$
P(X \backslash Y)=P(X)-P(X \cap Y), \quad P(Y \backslash X)=P(Y)-P(X \cap Y)
$$

and so

$$
P(X \cup Y)=P(X)-P(X \cap Y)+P(X \cap Y)+P(Y)-P(X \cap Y)=P(X)+P(Y)-P(X \cap Y)
$$

Thus

$$
P(X \cup Y)=P(X)+P(Y)-P(X \cap Y)=0.64+0.23-0.1472=0.7228
$$

