1. A hundred squash balls are tested by dropping from a height of 100 inches and measuring the height of the bounce. A ball is "fast" if it rises above 32 inches. The average height of bounce was 30 inches and the standard deviation was $3 / 4$ inches. What is the chance of getting a "fast" standard ball?

Solution.

Using the Central Limit Theorem we can conclude that if $S_{n}=\sum_{i=1}^{n} X_{i}$, then $\frac{s_{n-\mu n}}{\sigma \sqrt{n}} \sim N(0,1)$, where X_{i} - random variable means the height of the bounce with $E\left[X_{i}\right]=30$ and $\sigma\left[X_{i}\right]=0.75$. This is equivalent to $X \sim N\left(\mu, \sigma^{2}\right)$, because $S_{n}=\sum_{i=1}^{n} X_{i} \sim N\left(\mu n, \sigma^{2} n\right)$. So $P(X>32)=P\left(X^{*} \sigma[X]-E[X]>32\right)$, where $X^{*}=\frac{X-E[X]}{\sigma[X]} \sim N(0,1)$. $P(X>32)=P\left(X^{*} * 0.75-30>32\right)=P\left(X^{*}>2.6\right)=1-P\left(X^{*}<2.66\right)=1-$ $\Phi(2.66)=1-0,9961=0,0039$ where $\Phi(a)$ - function of standard normal distribution.

Answer: 0.0039

