Question 1. Show that, if x is a cluster point of $\{x^k\}$, and if $d(x, x^k) \ge d(x, x^{k+1})$, for all k, then x is the limit of the sequence.

Solution. By definition of a cluster point for any $\varepsilon > 0$ there is $K \in \mathbb{N}$ such that $0 < d(x, x^K) < \varepsilon$. Then for arbitrary k > K we have

$$d(x, x^k) \le d(x, x^{k-1}) \le \dots \le d(x, x^{K+1}) \le d(x, x^K) < \varepsilon.$$

So, for every $\varepsilon > 0$ there is $K \in \mathbb{N}$ such that $d(x, x^k) < \varepsilon$ for all $k \ge K$. This exactly means that x is the limit of x^k .