Question 1. Show that, if x is a cluster point of $\left\{x^{k}\right\}$, and if $d\left(x, x^{k}\right) \geq$ $d\left(x, x^{k+1}\right)$, for all k, then x is the limit of the sequence.

Solution. By definition of a cluster point for any $\varepsilon>0$ there is $K \in \mathbb{N}$ such that $0<d\left(x, x^{K}\right)<\varepsilon$. Then for arbitrary $k>K$ we have

$$
d\left(x, x^{k}\right) \leq d\left(x, x^{k-1}\right) \leq \cdots \leq d\left(x, x^{K+1}\right) \leq d\left(x, x^{K}\right)<\varepsilon .
$$

So, for every $\varepsilon>0$ there is $K \in \mathbb{N}$ such that $d\left(x, x^{k}\right)<\varepsilon$ for all $k \geq K$. This exactly means that x is the limit of x^{k}.

