The table below gives the depth of water across a river measured at one meter intervals between banks.
Distance (m) 01234
Water depth (m) 00.51 .60 .90
Use the Trapezium rule to estimate the cross-sectional area of the river. A river hydrologist estimates that at the place where this cross sectional data was measured the average speed of water flow is $0.6 \mathrm{~m} / \mathrm{s}$. Estimate the volume of water which passes this section of the river in one minute.

Solution:
We have

h_{i} (distance, m$)$	d_{i} (water depth, m)
$h_{0}=0$	$d_{0}=0$
$h_{1}=1$	$d_{1}=0.5$
$h_{2}=2$	$d_{2}=1.6$
$h_{3}=3$	$d_{3}=0.9$
$h_{4}=4$	$d_{4}=0$

Because $h=h_{1}-h_{0}=h_{2}-h_{1}=h_{3}-h_{2}=h_{4}-h_{3}=1$ then by the Trapezium rule we have

$$
S=\frac{h}{2}\left(d_{0}+2\left(d_{1}+d_{2}+d_{3}\right)+d_{4}\right)=\frac{1}{2}(0+2 \cdot(0.5+1.6+0.9)+0)=3\left(m^{2}\right)
$$

And finally

$$
V=S \cdot v \cdot t=3 \cdot 0.6 \cdot 60=108\left(\mathrm{~m}^{3}\right)
$$

Answer: $108\left(\mathrm{~m}^{3}\right)$

