The table below gives the depth of water across a river measured at one metre intervals between banks. Distance (m) 0123 4, water depth (m) 00.5 1.60.9 0. Use the trapezium rule to estimate the cross-sectional area of the river. A river hydrologist estimates that at the place where this cross sectional data was measured the average speed of water flow is $0.6 \mathrm{~m} / \mathrm{s}$. Estimate the volume of water which passes this section of the river in one minute.

Solution.

d	0	1	2	3	4
h	0	0.5	1.6	0.9	0

The cross-sectional area of the water is shown on the graph:

Total area is: $S=S_{1}+S_{2}+S_{3}+S_{4}$

Points of 1st triangle: $(0,0),(1,0),(1,0.5)$.
Area of 1st triangle: $S_{1}=\frac{1}{2} \cdot(1-0) \cdot(0.5-0)=0.25\left(m^{2}\right)$
2nd trapezium points: $(1,0),(2,0),(1,0.5),(2,1.6)$.
2nd trapezium area: $S_{2}=\frac{(0.5-0)+(1.6-0)}{2} \cdot(2-1)=1.05\left(m^{2}\right)$
3rd trapezium points: $(2,0),(3,0),(2,1.6),(3,0.9)$.
3rd trapezium area: $S_{3}=\frac{(1.6-0)+(0.9-0)}{2} \cdot(3-2)=1.25\left(m^{2}\right)$
Points of 4th triangle: $(3,0),(4,0),(3,0.9)$.
Area of 4th triangle: $S_{4}=\frac{1}{2} \cdot(4-3) \cdot(0.9-0)=0.45\left(\mathrm{~m}^{2}\right)$
So, total area is: $S=0.25+1.05+1.25+0.45=3\left(m^{2}\right)$
The volume of water passes this section of the river in one minute is:

$$
V=S \cdot v \cdot t=3 m^{2} \cdot 0.6 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 60 \mathrm{~s}=108\left(\mathrm{~m}^{3}\right)
$$

Answer: $S=3 \mathrm{~m}^{2}, V=108 \mathrm{~m}^{3}$.

