Task. Show that, if $\{s^k\}$ is bounded, then, for any element c in the metric space, there is a constant t > 0 with $d(c, s^k) \le t$, for all k.

Proof. By definition, the set $\{s^k\}$ is bounded if there exists some A > 0 such that

$$d(s^k, s^l) \le A$$

for all $k, l \geq 0$. Put

$$t = d(c, s^0) + A.$$

Then by triangle inequality for any k we have that

$$d(c, s^k) \le d(c, s^0) + d(s^0, s^k) \le d(c, s^0) + A = t.$$