

Question 1. Please show that any convergent sequence in a metric space is bounded, then find a bounded sequence of real numbers that is not convergent.

Solution. Let $x_n \rightarrow a$ as $n \rightarrow \infty$ in a metric space (X, ρ) . By definition of convergence for any $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that $\rho(x_n, a) < \varepsilon$ for all $n > N$. Take $\varepsilon = 1$ and find the corresponding $N \in \mathbb{N}$. Set M to be $\max\{\rho(x_1, a), \dots, \rho(x_N, a), \varepsilon\}$. Then for all $n \geq 1$ we have $\rho(x_n, a) \leq M$. Thus, the sequence $\{x_n\}_{n \in \mathbb{N}}$ is contained in the closed ball of radius M with the center in a . So, $\{x_n\}_{n \in \mathbb{N}}$ is bounded.

For an example of a bounded real sequence which is not convergent consider $x_n = (-1)^n$. We have $|x_n| = 1$ for all n , but there are two subsequences $x_{2n} = 1$ and $x_{2n-1} = -1$, $n \geq 1$, which are obviously convergent and have different limits. This explains why x_n cannot be convergent. \square