Consider a parabola $y=x^{\wedge}(2)-4 x+8$.
(a) Write down two straight lines that touch the parabola at only one point.
(b) Find the corresponding point of contact in (a).
a)
$y=x^{2}-4 x+8$
Slope of tangent at any point is:
$\frac{d y}{d x}=2 x-4$
Suppose, line that touches the parabola at the only one point x_{0} is $y=a x+b$. Then $a=\left.\frac{d y}{d x}\right|_{x=x_{0}}$ and $a x_{0}+b=x_{0}^{2}-4 x_{0}+8$.
So
$a=2 x_{0}-4$
$a x_{0}+b=x_{0}^{2}-4 x_{0}+8 \Rightarrow b=x_{0}^{2}-4 x_{0}+8-\left(2 x_{0}-4\right) x_{0}=-x_{0}^{2}+8$
For example $x_{0}=2$
$a=0, \quad b=4$
$\boldsymbol{y}=\mathbf{4}$
And $x_{0}=0$:
$a=-4 \quad b=8$
$y=-4 x+8$

Answer: $y=-4 x+8, y=4$
b)

Point of contact:
$\left\{\begin{array}{c}y=4 \\ y=-4 x+8\end{array} \Rightarrow 4=-4 x+8 \Rightarrow x=1\right.$
Answer $x=1, y=4$

