

Question #28401 give me an example to perform Levene's test. I have a school project that makes an app for QUEST algorithm. After doing chi square or ANOVA F test, sometimes I have to do Levene's test. If you don't mind, help me with an example.

Solution. Levene's test is used to test if k samples have equal variances. Equal variances across samples is called homogeneity of variance. Suppose that your big sample $Y = (Y_{1,.}, \dots, Y_{k,.})$ is divided into k "small" samples $Y_{i,.}, 1 \leq i \leq k$. Levene's test tests whether r.v.s inside small groups possess the same variance. Statistic of the test is

$$W = \frac{(N - k) \sum_{i=1}^k N_i (\bar{Z}_{i,.} - \bar{Z}_{.,.})^2}{(k - 1) \sum_{i=1}^k \sum_{j=1}^{N_i} (Z_{i,j} - \bar{Z}_{i,.})^2}$$

here $Z_{i,j} = |Y_{i,j} - \bar{Y}_{i,.}|$, $\bar{Y}_{i,.}$ is the mean of the i -th group. Respectively, $\bar{Z}_{i,.}$ are the group means of $Z_{i,j}$, $\bar{Z}_{.,.}$ is the mean of all $Z_{i,j}$, N, N_i are respectively the size of the big and small samples. After calculating this statistic, you should compare it with $F_{a,k-1,N-k}$ $1 - \alpha$ (take $\alpha = 0.05$ for instance) quantile of Fisher distribution with $k - 1$ and $N - k$ degrees of freedom. If $W > F_{a,k-1,N-k}$, then the null hypothesis is rejected, that is the variance inside the small samples differs. Otherwise, we accept the null hypothesis.