Solution.

$$\begin{aligned} \sin(x) - \cos(x) &= -0.3, \\ \sin(x) - \cos(x) &= -\sqrt{2} \left(\frac{\cos(x)}{\sqrt{2}} - \frac{\sin(x)}{\sqrt{2}} \right) = -\sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) \cos(x) - \sin\left(\frac{\pi}{4}\right) \sin(x) \right) = -\sqrt{2} \cos\left(\frac{\pi}{4} + x\right), \\ \text{So } -\sqrt{2} \cos\left(\frac{\pi}{4} + x\right) &= -\frac{3}{10}. \end{aligned}$$

Divide both sides by $-\sqrt{2}$:

$$\cos\left(\frac{\pi}{4} + x\right) = \frac{3}{10\sqrt{2}}$$

For $cos(x) = a, x = \pm arccos(a) + 2\pi n, n \in \mathbb{Z}$, then

$$\frac{\pi}{4} + x = \pm \arccos\left(\frac{3}{10\sqrt{2}}\right) + 2\pi n, n \in \mathbb{Z}.$$

Subtract $\frac{\pi}{4}$ from both sides:

$$x = \pm \arccos\left(\frac{3}{10\sqrt{2}}\right) - \frac{\pi}{4} + 2\pi n, n \in Z.$$

Answer

$$x = \pm \arccos\left(\frac{3}{10\sqrt{2}}\right) - \frac{\pi}{4} + 2\pi n, n \in Z.$$