Solution.

$\sin (x)-\cos (x)=-0.3$,
$\sin (x)-\cos (x)=-\sqrt{2}\left(\frac{\cos (x)}{\sqrt{2}}-\frac{\sin (x)}{\sqrt{2}}\right)=-\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) \cos (x)-\sin \left(\frac{\pi}{4}\right) \sin (x)\right)=-\sqrt{2} \cos \left(\frac{\pi}{4}+x\right)$,
So $-\sqrt{2} \cos \left(\frac{\pi}{4}+x\right)=-\frac{3}{10}$.
Divide both sides by $-\sqrt{2}$:
$\cos \left(\frac{\pi}{4}+x\right)=\frac{3}{10 \sqrt{2}}$,
For $\cos (x)=a, x= \pm \arccos (a)+2 \pi n, n \in Z$, then
$\frac{\pi}{4}+x= \pm \arccos \left(\frac{3}{10 \sqrt{2}}\right)+2 \pi n, n \in Z$.
Subtract $\frac{\pi}{4}$ from both sides:
$x= \pm \arccos \left(\frac{3}{10 \sqrt{2}}\right)-\frac{\pi}{4}+2 \pi n, n \in Z$.

Answer.

$x= \pm \arccos \left(\frac{3}{10 \sqrt{2}}\right)-\frac{\pi}{4}+2 \pi n, n \in Z$.

