By using divergence theory compute the surface integral of $\int \int T F.ds$ where T is the unit spehere $x^2+y^2+Z^2=1$. and the vector field F is (y,z,x). I found the div(F)=0 so the surface integral is zero? Is this correct? Could someone please confirm? Thank you!

1. Ostrogradsky-Gauss theorem states that the flow of the vector field \vec{F} through the closed surface T which limits the volume V equals the integral of divergence of the vector field on this volume, namely,

$$\iint_T (\vec{F} * \vec{n}) ds = \iiint_V div \vec{F} dv.$$

2.In the given case $V: x^2 + y^2 + z^2 \le 1$, $T: x^2 + y^2 + z^2 = 1$, $\vec{F} = (y, z, x)$.

3.As
$$div\vec{F} = 0$$
 then $\iint_T (\vec{F} * \vec{n}) ds = 0$.

Solution.