Determine the equation of the perpendicular bisector of the line segment with endpoints $(-1,2)$ and $(5,4)$.

Solution: We will assume, that the line segment has endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$. The bisector passes through the midpoint $M\left(x_{m}, y_{m}\right)$ of the line segment $A B$, it has coordinates $x_{m}=\left(x_{1}+x_{2}\right) / 2=(-1+5) / 2=2$; $y_{m}=\left(y_{1}+y_{2}\right) / 2=(2+4) / 2=3$. Then, we will find the slope k^{\prime} of the line segment, $k^{\prime}=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)=$ $=(4-2) /(5-(-1))=1 / 3$. After that we will calculate the slope of the bisector according to the condition of perpendicularity, $k=-1 / k^{\prime}=-3$. The equation of the perpendicular bisector will look as $\mathrm{y}=k \cdot \mathrm{x}+b$. After the substitution of $x=x_{m}=2$ and $y=y_{m}=3$ we can find the coefficient $b: 3=-3 \cdot 2+b, \quad b=9$. Then, equation of the perpendicular bisector of the line segment $A B$ is: $y=-3 \cdot x+9$.

Answer: $\mathrm{y}=-3 \cdot \mathrm{x}+9$.

