Find the volume of the solid obtained by rotating the region bounded
by $x=4 y^{2}-y^{3}, x=0$ about $y=0$

Solution.

1.Finding the maximal value of x we get that the given figure is bounded by upper line $x=4 y^{2}-y^{3}$ for $y \in\left[\frac{8}{3}, 4\right]$ and lower line $x=4 y^{2}-y^{3}$ for $y \in\left[0, \frac{8}{3}\right]$.
2.Write the equation in a parametric form

$$
\left\{\begin{array}{l}
y=4 \sin t \tag{1}\\
x=64 \sin ^{2} t(1-\sin t) .
\end{array} \text { where } t \in[0, p i / 2]\right.
$$

And note that for $y=\frac{8}{3}$ the value of $t=\arcsin \frac{2}{3}$.
3. The desired volume $=$ the volume formed by rotation of the upper line $t \in\left[p i / 2, \arcsin \frac{2}{3}\right]-$ the volume formed by the lower line $t \in\left[0, \arcsin \frac{2}{3}\right]$.
That is
or

$$
V=p i \int_{p i / 2}^{\arcsin \frac{2}{3}} y^{2}(t) x^{\prime}(t) d t-p i \int_{0}^{\operatorname{arccin} \frac{2}{3}} y^{2}(t) x^{\prime}(t) d t
$$

$$
\begin{equation*}
V=-p i \int_{0}^{p i / 2} y^{2}(t) x^{\prime}(t) d t \tag{2}
\end{equation*}
$$

4.Substituting (1) into (2) and evaluating the integral we 'Il get

$$
V=\frac{512}{5} p i
$$

Answer: $\quad V=\frac{512}{5} p i$.

