A registered golden retriever has a litter of 11 puppies. Assume that the probability of a puppy being male is .5

1. Because the owner of the dof can expect to get more money for a male puppy, what is the most likely number of males in the litter?

Let N be the number of males in the litter.

$$
\begin{gathered}
P(N=k)=\binom{11}{k} \cdot \frac{1}{2^{11}} \\
\max _{k} P(N=k)=\frac{\max _{k}\binom{11}{k}}{2^{11}}=\frac{\binom{11}{6}}{2^{11}}=\frac{\binom{11}{5}}{2^{11}}=P(N=6)=P(N=5)
\end{gathered}
$$

So the most likely number of males is 6 or 5 .
2. What is the probability at least 7 of the puppies will be male?

$$
\begin{gathered}
P(N \geq 7)=\frac{\binom{11}{7}+\binom{11}{8}+\binom{11}{9}+\binom{11}{10}+\binom{11}{11}}{2^{11}}= \\
=\frac{\frac{8 \cdot 9 \cdot 10 \cdot 11}{4!}+\frac{9 \cdot 10 \cdot 11}{3!}+\frac{10 \cdot 11}{2!}+\frac{11}{1!}+1}{2^{11}}=\frac{11(30+15+5+1)+1}{2^{11}}= \\
=\frac{11 \cdot 51+1}{2^{11}}=\frac{562}{2^{11}}=\frac{281}{1024}
\end{gathered}
$$

