A rich uncle wants to make you a millionaire. How much money must he deposit in a trust fund paying 7% compounded continuously at the time of your birth to yield $\$ 1,000,000$ when you retire at age 62?
$\$ 1,000,000=\mathrm{Pe}^{\wedge}(.07 \times 62)$
Not sure how to eliminate the Pe in order to bring down the (.07x62) and eventually divide $1,000,000$ by it.

Solution:

We have

$$
a=p \cdot \exp (b \cdot t)
$$

where
$a=1,000,000 ; b=0.07 ; t=62 ; p$ is the value of deposit. Thus we have

$$
p=\frac{a}{\exp (b \cdot t)}=\frac{1,000,000}{\exp (0.07 \cdot 62)}=\frac{1,000,000}{\exp (4.34)} \approx 13036.53(\$)
$$

Answer: 13036.53 \$

