Task. What is the 90% confidence interval for a population of 482 , means of 164 standard deviation of 33 .
Solution. Thus we measure some numerical characteristic X of these peoples and this characteristic has mean $\mu=164$ and standard deviation $\sigma=33$. We take a sample of $n=482$ people. Then the sample mean has normal distribution $N(\mu, \sigma / \sqrt{n})$.

Therefore the 90% interval has the form

$$
(\mu-\delta, \mu+\delta)
$$

where δ is choosen so that

$$
P(|X-\mu|<\delta)=0.9
$$

Consider another random variable

$$
Z=\frac{X-\mu}{\sigma / \sqrt{n}}
$$

Then Z has standard normal distribution $N(0,1)$ and the values of its distribution function

$$
F(t)=P(Z \leq t)
$$

can usually be found in any book in Probability theory.
Notice that

$$
X-\mu=Z \sigma / \sqrt{n}
$$

and so

$$
P(|X-\mu|<\delta)=P(|Z \sigma / \sqrt{n}| \leq \delta)=P(|Z| \leq \delta \sqrt{n} / \sigma)=0.9
$$

Denote

$$
a=-\delta \sqrt{n} / \sigma
$$

Since the normal distribution is symmetrical,

$$
P(|Z|<a)=1-2 F(a),
$$

whence

$$
P(|X-\mu|<\delta)=1-2 F(a)=0.9
$$

whence

$$
F(a)=(1-0.9) / 2=0.05 .
$$

Then from tables of values of F we obtain that

$$
a=1.645 .
$$

Thus

$$
a=\delta \sqrt{n} / \sigma=1.645
$$

whence

$$
\delta=1.645 \cdot \frac{\sigma}{\sqrt{n}}=\frac{1.645 * 33}{\sqrt{482}}=2.4726
$$

Therefore 90% confidence interval is the following:

$$
\begin{gathered}
(164-2.4726,164+2.4726) \\
(161.5274,166.4726) .
\end{gathered}
$$

