A bag contains three red, four white and five black balls. If three balls are taken without replacement, what is the probability that:
(i) they are all the same colour

Probability what they are all the same colour equals:
$P=P(r)+P(w)+P(b)$
$P(r), P(w), P(b)$ - probability what they are all red, white or black colour
$P(r)=P\left(r_{1}\right) * P\left(r_{2}\right) * P\left(r_{3}\right)$
$P\left(r_{1}\right), P\left(r_{2}\right), P\left(r_{3}\right)$ - probability what $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ taken ball is red.
$P\left(r_{1}\right)=\frac{3}{3+4+5}=\frac{3}{12}=\frac{1}{4}$ - we have 3 red balls and total 12.
$P\left(r_{2}\right)=\frac{2}{2+4+5}=\frac{2}{11}$ - we have 2 red balls and total 11.
$P\left(r_{3}\right)=\frac{1}{1+4+5}=\frac{1}{10}-$ we have 1 red ball and total 10.
$P(r)=P\left(r_{1}\right) * P\left(r_{2}\right) * P\left(r_{3}\right)=\frac{1}{4} \frac{2}{11} \frac{1}{10}=\frac{1}{220}$
For $P(w), P(b)$ all almost the same:
$P(w)=\frac{4}{12} \frac{3}{11} \frac{2}{10}=\frac{1}{3} \frac{3}{11} \frac{1}{5}=\frac{1}{55}$
$P(b)=\frac{5}{12} \frac{4}{11} \frac{3}{10}=\frac{5}{12} \frac{4}{11} \frac{3}{10}=\frac{1}{3} \frac{1}{11} \frac{3}{2}=\frac{1}{22}$
$P=P(r)+P(w)+P(b)=\frac{1}{220}+\frac{1}{55}+\frac{1}{22}=\frac{3}{44}$
Answer: $\frac{3}{44}$
(ii) there are no black balls

Probability what there are no black balls:
$P(b)=P\left(b_{1}\right) * P\left(b_{2}\right) * P\left(b_{3}\right)$
$P\left(b_{1}\right), P\left(b_{2}\right), P\left(b_{3}\right)$ - probability what $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ taken ball is no black.
$P\left(b_{1}\right)=\frac{7}{12}$ - we have 7 no black balls and total 12
$P\left(b_{2}\right)=\frac{7}{11}$ - we have 7 no black balls and total 11
$P\left(b_{3}\right)=\frac{7}{10}$ - we have 7 no black balls and total 10
$P(b)=P\left(b_{1}\right) * P\left(b_{2}\right) * P\left(b_{3}\right)=\frac{7}{12} \frac{7}{11} \frac{7}{10}=\frac{343}{1320}$
Answer: $\frac{343}{1320}$
(iii) there are 2 black balls

We can take 2 black balls:
black, black, no black: $P(1)=\frac{5}{12} \frac{4}{11} \frac{7}{10}$
black, no black, black: $P(2)=\frac{5}{12} \frac{7}{11} \frac{4}{10}$
no black, black, black: $P(3)=\frac{7}{12} \frac{5}{11} \frac{4}{10}$
$P=P(1)+P(2)+P(3)=3 * \frac{7}{12} \frac{5}{11} \frac{4}{10}=\frac{7}{22}$
Answer: $\frac{7}{22}$
(iv) there is one ball of each colour

We have 3! combinations like:
brw, bwr, wbr, wrb, rbw, rwb (for example brw means black, red, white)
So total probability:
$P=3!* P(b r w)=6 * \frac{5}{12} \frac{4}{11} \frac{3}{10}=\frac{3}{11}$
Answer: $\frac{3}{11}$

