1. What is the general solution of $e^{\frac{1}{\sqrt{2}}}\left(e^{\sin x}+e^{\cos x}\right)=2$ ?

## Solution.

$e^{\frac{1}{\sqrt{2}}}\left(e^{\sin x}+e^{\cos x}\right)=2$ equal to $\left(1-e^{\frac{1}{\sqrt{2}}+\sin x}\right)+\left(1-e^{\frac{1}{\sqrt{2}}+\cos x}\right)=0$
It is easily to see that $\sin x+\frac{1}{\sqrt{2}}=0$ and $\cos x+\frac{1}{\sqrt{2}}=0$ one of the solutions.
And this is equal to $x_{0}=\frac{5 \pi}{4}+2 \pi k, k \in Z$. We have obtain that $x_{0}$ is the minimum of the function in the left side of the equation, because $e^{\sin x}+e^{\cos x}$ is $2 \pi$-periodic function, and If it were not so we would have 2 solutions on the every interval ( $2 \pi k, 2 \pi(k+1)]$ instead of one. So let's find the minimum of the left side:
$\min =e^{\frac{1}{\sqrt{2}}}\left(e^{\sin \left(\frac{5 \pi}{4}+2 \pi k\right)}+e^{\cos \left(\frac{5 \pi}{4}+2 \pi k\right)}\right)$, it follows that $\min =2$. It is easy to see that this is not exactly maximum, because if $x=\frac{\pi}{2}$ we have $e^{\frac{1}{\sqrt{2}}}\left(e^{\sin \frac{\pi}{2}}+e^{\cos \frac{\pi}{2}}\right)=e^{1+\frac{1}{\sqrt{2}}}>\min =2$. And now we have got perfect situation, when left side of the equation more than 2 , and right side of the equation is equal 2 . We conclude that there is no any other solution instead of $x_{0}$.

Answer: $\frac{5 \pi}{4}+2 \pi k, k \in Z$.

